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Abstract— For the functional validation of hardware designs, simulation with coverage analysis is still the primary means at RTL description 
of design. Here coverage analysis shows the way towards the optimal use of resource, validation or verification completeness and untested 
areas of HDL design. The complete coverage analysis of Memory Built in Self-Test (MBIST) controller using several code and functional 
coverage metrics is presented. Coverage metrics are used to keep the focus at assertions written to verify the functionality of MBIST 
controller. Use of assertions and coverage metrics gets rid-off massive test patterns to validate the MBIST controller design more strongly. 
This paper also presents the implementation of March algorithm based MBIST controller using System Verilog. With the help of assertions 
written in System Verilog and their coverage analysis, the test cases are reduced  from 88 test cases to 25 test cases to achieve the 
approximately same functional coverage i.e. 97 % is also discussed in the paper.  

Index Terms— MBIST Controller, System Verilog Assertions (SVA), FSM, Coverage Analysis, Code Coverage, Functional Coverage. 

 

——————————      —————————— 
 

1. INTRODUCTION  

     A complex System on Chip (SoC) design comprises 

several embedded memories to increase the processing 
speed. The testing of memories is very crucial because of 
very low yield of memories during fabrication. They are 
very much affected by several memory faults.  But in case 
of embedded memories it becomes a tedious task because 
of no primary inputs and outputs to external of SoC. For 
this purpose a MBIST circuitry is added with memory 
which make this testing job very comfortable while adding 
some area over head.  
     The main and important part of MBIST circuitry is 
MBIST controller which controls the sequence of all 
operations during testing [1]. The fault detection in the 
memory depends on the read and write operations 
sequence controlled by the MBIST controller. It is good to 
know that the design of MBIST controller does not depend 
on size of memory under test. For the reliability purpose of 
MBIST, the functional verification of the MBIST controller 
design is utmost necessary.   
     Functional verification of MBIST controller is the key to 
guarantee the quality of design and reliability for required 
functionality. Verification efforts has been put on verifying 
the correct functionality at initial register-transfer level 
(RTL) descriptions of MBIST controller written in hardware 
description language (HDL). Traditionally, the functional 
verification is done by simulation with large number of test 
patterns but at the same time formal verification techniques 
claim to verify the design at different design levels. The 
simulation based methods will continue to be an important  
 

 
 
part of verification process until the computing complexity 
of the formal verification methods reduces [2]. 
     
 But during simulation, an important question always 
bothers to the designers and the verification engineers: Are 
we done yet? Or is the verification completed? In the 
typical design environments the verification is assumed to 
be completed if design engineer thinks that he has done 
complete and thorough simulation. But here, the quality of 
the test cases depends on the designer’s understanding of 
the design and that is not measurable.  
     A verification engineer can determines the level or depth 
of verification by coverage analysis of the design under 
verification (DUV).  It can be analyzed that which part of 
HDL code of design is tested or not during simulation by 
monitoring the execution of code. The coverage analysis 
highlights the uncovered code portion[3] thus It provides 
the clear understanding where to put the effort to test 
untested the design functionality to achieve 100% coverage 
which is desirable for any design. Achieving 100% coverage 
cannot give 100% surety that design is error free. It 
provides the systematic approach to attain completeness of 
verification. 
     For this purpose, code coverage and functional coverage 
metrics are used to verify the design in HDL. The code 
coverage comprises the several coverage metrics and can 
vary based on used tool for coverage analysis [3]. The basic 
idea behind these coverage metrics is to cover up the design 
structure completely written in HDL. While the functional 
coverage focuses on the functionality of the design. Till now 
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there is not such a metric which is accepted for complete 
and reliable verification coverage. 

 
Fig. 1. Effect of applying coverage analysis.[3] 
      
The improvement in the verification in less time is possible 
by using coverage analysis is shown in Fig. 1. Nevertheless 
the simulation based validation of design is partial 
complete.  
     This paper includes the FSM design of MBIST controller 
based on March algorithm with pause logic using system 
Verilog to detect different memory faults such as address 
faults (AFs), stuck at faults (SAFs), transition faults (TFs), 
and coupling faults (CFs) and retention faults in SRAM 
memory.  For the complete validation of MBIST controller, 
simulation based and formal verification technique are 
combined for coverage validation of MBIST controller. 

The rest of paper is organized as follows: section II 
shows the implementation of MBIST controller which is 
taken as DUV. Section III comprises assertion based 
functional verification of MBIST controller. Section IV 
comprises the different coverage metrics, coverage analysis 
and coverage results. Section V includes final results and 
test case analysis. In section VI paper is concluded.   

2. FSM IMPLEMENTATION OF MBIST 
CONTROLLER 
      The controller generates the control signals for other 
components of MBIST circuitry such as patt_g for 
data/pattern generator, en to start the address counter 
inside the address generator, rw for Read/ writes generator 
and en for signature analyzer and other components too. 
The top level block diagram of MBIST controller is shown 
in Fig. 2. Mainly the controller handles the test sequence 
and its result corresponding to memory output. After 
assertion of T_mode signal from higher level processor or 
controller, MBIST controller generates the control signals 
corresponding to the pattern generator, address generator, 
read/write and signature analyzer. Controller and pattern 
generator control the up or down address sequence by 
generating the control signals for address generator. The 
generation of March pattern is based on the ‘0’ or ‘1’ value 

of control signal patt_g whether it is marching 0 or 1. 
Controller generates the control signal rw to the read/write 
controller for the reading or writing operations from and 
into the memory.   
 

 
Fig. 2. Top level block diagram of MBIST controller 
 
     Match signal is the output of signature analyzer and 
input to the controller. Based on the value of match, 
controller asserts the pass or fails if match is ‘1’ or ‘0’ 
correspondingly. Only after completion of March test 
sequence, controller asserts the done signal. 
     Pause element is added just after the write element to 
check which memory cell is not capable to retain the same 
written data after a particular time. During pause the 
controller does not allows the execution of the original 
march test sequence of read/write operations on memory 
under test.   

 
 
Fig. 3. March C algorithm with pause element. 
 
     The controller’s implementation is based on March C 
algorithm [4] which is capable to detect SAFs, AFs, TFs, CFs 
(except linked CFs). The March C algorithm includes 6 
march elements say M1, M2, M3, M4, M5 and M6 [5]. But 
here in Fig. 3, the implemented algorithm comprises an 
additional element pause say M7 to check the memory data 
retention time which generates memory retention faults.   
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Fig. 4. Finite State Machine Diagram of MBIST Controller 

 
     The Fig. 4 shows the implemented FSM structure of 
MBIST controller which is easy to implement as a FSM and 
very feasible if no further improvement is required in 
MBIST controller design. The above FSM state diagram 
consists several states and every state represents a 
particular march element except state idle.  
     Initially controller rests at Idle state and keeps other the 
MBIST circuitry in idle until t_mode signals is asserted. But 
after getting value ‘1’ at t_mode signal, controller starts 
traversing the next states to generate required pattern for 
read or write operations from and into the memory cells. 
Now in offline testing MBIST controller takes the controls 
of memory from higher level processor. At every state a 
read/write signal ‘rw’ gets a value ‘1’ or ‘0’. State Wdn0 
comes when t_mode signal is asserted high and at every 
maximum and minimum count value the present state 
changes to the next state as shown in Fig. 4. The maximum 
value of count depends on the address width of SRAM 
memory.  In normal condition if a state transition happens, 
it means a March element gets complete. At first March 
state Wdn0, ‘rw’ signal is kept at ‘0’ and read/write 
generator write data in memory until count value gets 
minimum. Here ‘W’ represents the write operation, ‘dn’ 

shows the down marching and ‘0’ shows that marching 
pattern is 0. During up marching ( ), count starts from 
minimum address value to the maximum address value 
and state changes only when count gets its maximum value 
unless t_mode and reset signal change. In case of down 
marching, state transition occurs only when count gets its 
minimum value.  Pause state is inserted between a write 
state (Wdn0) and a read state (Rdn0). During pause, 
controller just holds the marching operation on memory for 
the specified time. The March testing follows the read-test-
write sequence that’s why every read state in FSM design 
comprises the test result as a signal pass /fail. After 
completion of test controller enters into the Done state and 
controller asserts the done signal to show that the test is 
completed. The FSM shown in Fig. 4 is implemented using 
System Verilog in Synopsys VCS tool. 
 

 
. Fig. 5. Simulation output 
 
     In the simulation output waveform only input and 
output of MBIST controller are shown in Fig. 5 except count 
and signature. The ‘1’ value of pass or fail signal indicates 
the success and failure of corresponding applied data 
pattern on the memory. When the match signal gets ‘0’ 
value in the next clock cycle, MBIST controller assert the fail 
high and low to the pass signal. Again when match goes 
high the controller assert pass signal high and low to fail. 
Whenever rst (reset) signal goes high, the state immediately 
switches to the idle state. After attaining idle state, there is 
no transition in the state of controller and state gets stable 
until rst gets low value again. Controller starts transitions 
state to next state only when rst is low and t_mode signal 
gets high value.   
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     Simulation output shown in Fig. 5 is only based on some 
test cases and provides the functionality check but not 
completely. With such functional checking, there is a 
possibility to leave some corner cases untested. And there is 
possibility of bugs in such untested corner cases. These 
corner cases are tested by using system Verilog assertion for 
design’s functional properties and by adding different test 
cases after analyzing the coverage metrics for the MBIST 
controller. 
 

3. Functional Verification of MBIST 
controller 

 
 Assertion Based Verification of MBIST Controller 

Assertion Based Verification addresses all the challenges 
faced during only simulation based validation of design 
without the use of assertions. Here, assertions are defined 
for MBIST controller with complete assertion’s ontology 
which includes the information about assertion under 
construction such as class, type, name, expression, message, 
severity level, condition and snippet. The SVAs are written 
for MBIST controller to check the required specifications 
and functional properties according to verification plan. 
Based on the verification requirements, assertions for 
MBIST controller design are categorized only on the basis 
of class and other ontological information would be 
covered with this.   
 
Class: Two main types of classes to define assertions for 
MBIST controller are interface boundary and internal 
functional spots. 
 
At Interface Boundary of MBIST Controller: 
 
 It is a block level based approach to write the assertions for 
MBIST controller. It is mentioned in section 2 that MBIST 
controller interacts with several blocks in MBIST 
architecture and other than MBIST too. SVAs are written 
here to check whether the controller interface/boundary 
signals are according to the required controller’s 
specification or not. Here, assertions mainly check the 
timing requirements among the interface signals. 
Table 1. Verification requirements for the interface signals. 
 

Interface 
Features 

            Interface signals and their features 
Signals  Expected features 

1. Reset, 
T_mode 

T_mode=1 and reset=0 and 
its opposite must be 
synchronous  

2. T_mode, en en=1 with in 1clock cycle 

after t_mode is asserted 
3. Match, Pass,  Pass=1 with in 1clock cycle 

after match is asserted 
4. Match, Fail, Fail=0 with in 1clock cycle 

after match=0 
 
Internal Functional Spots of MBIST Controller: MBIST 
controller is the control block of MBIST which is 
implemented as a FSM. The main verification requiremnets 
of FSM are defined as the transitions among the states, 
sequencing and timing requirements. For the  every march 
operation shown in figure 2, there is a different state in 
controller’s FSM design.  
   Now here, assertions are written according to verification 
plan and classified to verify the llegal state transitions, 
correct sequencing, timing requirements and functionality 
in each state. 
 

4. COVERAGE ANALYSIS FOR MBIST 
CONTROLLER  

     Coverage analysis makes functional verification easy 
and less time consuming and it also helps to know whether 
functional verification is done enough or not. Thats why 
coverage analysis plays important role to check  the 
verification completeness of MBIST controller. 
     The controller’s coverage analysis depends on two main 
coverage, one is code coverage and another is functional 
coverage. Code coverage is independent of functional 
coverage but it helps to obtain verification completeness of 
MBIST controller. 

A. Code Coverage Analysis of MBIST Controller 
     Here eight different very useful coverage metrics are 
introduced that can be classified as code coverage metrics 
for MBIST controller. Sometime different names are used 
for similar types of coverage metrics [2] depending upon 
the understanding and used coverage tool. Code coverage 
metrics helped to identify which structure in HDL code of 
controller is exercised during simulation. 
 

1) Line Coverage:   Line is one of the simplest 
structures of HDL code. Line coverage metric as Fig. 6 
shows the result of exercised lines with respect to the total 
number of lines present in HDL code of MBIST controller. 
A line of system Verilog code is said to be covered if it has 
had transaction on it. An event may or may not occur 
during transaction at that line but line count as covered. [6] 
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Fig. 6. Line coverage score for MBIST controller. 

 
     In Fig. 6, the total line coverage score is around 98.5% for  
system verilog HDL code of MBIST controller . At the same 
time the Fig. 7 shows the covered lines and uncovered line 
in HDL of controller. It helped to identify the cause of not 
covering the particular lines and shows the effectiveness of 
test suits.  
2) Statement Coverage: In this coverage analysis of 
MBIST controller, it only counts the executable statements. 
A line may contains more than one statements .For a 
conditional statement at line 36 in Fig. 7, there one 
countable statement state<= s_idle considered for if 
statement and multiple countable statements are 
considered for else statement [2]. Fig. 6 shows the total 
statement coverage score is around 99%.  In Fig. 8 at line 68, 
the red shaded portion shows the uncovered countable 
statements for else statement. 
 

 
Fig. 7.  Covered lines in the HDL code of MBIST controller. 
 
2) Block Coverage: Block coverage is also called 
segment coverage of HDL code. Its measuring unit of code 
is a sequence of non-branching codes which is executed at 
the same simulation time [2]. Block coverage reduces the 
recording units for coverage analysis. Mostly system tool 
records as block coverage and display results in term of 
statement coverage but there is a slightly difference 
between them. In Fig. 6, the block coverage score is shown 
as around 99% with total number of blocks extracted from 
the MBIST controller HDL code by Synopsys-VCS tool.  
 
3) Branch Coverage: Branch coverage metric is also 
called decision coverage matric. This metric involved the 
control flow through the MBIST controller HDL code 
during simulation and can be represented as control flow 
graph (CFG) to code [7]. As it measures the coverage of 

each branch present in if and case statements. It focused on 
the decision points or control statements that affect the 
control flow of the controller’s HDL code execution. From a 
decision point, different branches originates in HDL such as 
form an if statement, there are two branches one is for true 
and another is for false case. Decision coverage will report 
the evaluation in both true and false cases during 
simulation. For the case statement present in FSM HDL code 
of MBIST controller, decision coverage verified that each 
branch of the case statement, including the default. But the 
default state in the designed MBIST controller is idle state 
which is controlled by reset signal which is at high value by 
default. It showed uncovered default branch and one other 
at line 68 shown in Fig. 8. The total branch coverage score 
for designed controller is 94.74 shown in Fig. 9. It is very 
much possible that at initial attempts line coverage is 
around 100% and branch coverage is much less than of it. It 
shows that there are still untested cases. 
 

 
Fig. 8.  Covered branches in HDL code of MBIST controller.  
 
The difference between line coverage and branch coverage 
of MBIST controller is due to untested default branch which 
is due to implied design of case statement in controller’s 
HDL 
Therefore, Branch coverage Metric is considered to be more 
complete than line coverage matric. 
 

 
Fig. 9. Branch coverage score for MBIST controller 

4) Path Coverage: Path coverage measures the 
coverage of all paths present in the HDL code. A path is 
defined as a unique sequence of branches or decisions from 
the starting of a code section defined in HDL to the end of 
it. This sequence must be corresponding to a path in the 
control flow of the HDL code. A path in HDL code must 
contain an edge which is not included in other paths [7]. In 
HDL code of controller, there are many if statements which 
generates the different branches and sequences. In other 
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words, a control statement generates a different path in the 
HDL code. Path coverage is similar to decision coverage but 
it covers multiple sequential decisions. 
     

 
Fig. 10. Path coverage score for MBIST controller 
 
The branch of case statement (In the HDL code of MBIST 
controller) on line 67 followed by the else branch of if in Fig. 
8 defines one path. The total path coverage score of MBIST 
controller is 81.58% as shown in Fig. 10. If a branch is not 
covered in HDL code then it may stop the coverage of 
several paths through this branch and generates the 
sequencing error in the design that’s why path coverage 
metric is more complete than the branch or decision 
coverage metrics. It is a very cumbersome because of very 
large number of paths in a design which makes 100 % score 
impractical for path coverage [2]. 
 
5) Conditional coverage: Conditional coverage or 
multiple condition coverage [8] is sometimes called 
expression coverage because the conditions are evaluating 
based on variable or expression in the conditional 
statements. It provides the coverage statistic for variables 
and expressions. It is shown in Fig. 11 as shaded portions 
(as evaluated expressions) how a conditional coverage 
metrics records the coverage by evaluating the variables or 
expressions. The total conditional coverage score is 100% 
shown in Fig. 12, it means every possible case of conditions 
has been evaluated during simulation of HDL code of 
MBIST controller.  It is a very important and critical 
coverage metrics because it can find the errors in the 
conditional statements that cannot be easily found by any 
other coverage analysis [2].  
 

 
Fig. 11.  Covered conditions in the HDL code of MBIST controller. 
 

 
Fig. 12. Conditional coverage scores for MBIST controller.  
 
6) Event Coverage: Most HDL simulators are event-
driven. Therefore, it is necessary to care about the possible 
events in a design. Events are associated with the change of 
a signal. For example, as shown in the line 29 of Fig. 7, there 
are two event always @ ( posedge clk or posedge rst  ) which 
wait for the clk or rst signal changing from low to high. 
These two are the control events [9] of complete FSM 
design of MBIST controller. It is shown in Fig. 12 that both 
events have been covered completely and event coverage 
score for the controller’s HDL code is 100%. This coverage 
metrics is very useful when there are too much control 
events in the design.  
 
7) FSM Coverage:  In code coverage point of view, the 
FSM coverage metric cover number of traversed states in 
FSM design during the simulation. Here FSM coverage is 
defined as language-based code coverage for the MBIST 
controller HDL code just to show whether the all design 
states are traversed or not. It is most important coverage 
metric for presented MBIST controller design because it 
found out most of the design bug due to its closeness to the 
behavior of design space. The transitions and sequencing 
coverage of MBSIST controller’s FSM is defined in the 
functional coverage analysis in next subsection of paper. 
 

 
Fig. 13. FSM coverage score for MBIST controller. 
 
     The FSM state traversed coverage score is 100% as 
shown in Fig. 13. The all 13 states have been traversed in 
HDL of MBIST controller written in system Verilog during 
simulation shown as shaded portion in Fig. 14.  
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Fig. 14.  Covered states and transitions of MBIST controller FSM. 

The defining of FSM coverage metric was relatively more 
beneficial than other metric because it is MBIST controller 
design dependent. The main problem was to write the 
coverage directed tests so that all states, transition and 
sequences gets covered. 

B. Functional coverage Analysis of MBIST 
Controller  
     Here defined functional coverage metrics are 
corresponding to the designed FSM controller. Metrics 
defined in this category such as toggle coverage, Sequence 
and transition coverage of FSM and assertion coverage are 
related to computation performance of HDL code rather 
than its structure [7]. The main motive to define such 
metrics was to exercise each functional scenario of MBIST 
controller. During functional coverage, the coverage 
monitor looks for error in state transitions and event 
sequencing mainly in FSM designs. Assertions which 
interpret the MBIST controller hardware functionality in 
system Verilog language are considered the special case to 
monitor.  
 

1) Toggle Coverage: Sometime toggle coverage is also 
called as variable coverage [2]. It measures that each bit in 
the nets and registers or bits of logic change their polarity 
during simulation and not stuck at one level [10]. Toggle 
coverage metrics is considered as first functional coverage 
metric because without tested a bit properly function 
coverage target cannot be complete. The functional 
behavior of MBIST controlled is different for the toggling 
from 0 to 1 and from 1 to 0 of some logic bits.   
 

 
Fig. 15. Toggle coverage score for MBIST controller in detail. 
 
     In Fig. 15, detail toggle coverage report is shown with 
toggle score of net, register and logic bits. At same time the 
Fig. 16 shows that which logic signal bits did not toggled 
completely. In Fig. 16 the red shaded signals shows that 
their bits are not changing polarity that’s why not covered 
by coverage metric during simulation. But it is understood 
here that signal c_max and  c_min in MBIST controller 
design are the minimum and maximum value of address 
counter which are constants values.  
     Toggle coverage analysis is proved very useful for 
MBIST controller functional verification because 
involvement of 32 bit read and write for the 32 bit wide 
SRAM. It is applied for structural [10] and white box 
verification of controller to show that the control logic is 
working as intended.  
 

 
 Fig. 16.  Toggle coverage details of logic bits in HDL code of MBIST 
controller.  

 
2) Transition and Sequence Coverage as parts of 
FSM      coverage:  As functional coverage point of view 
of FSM MBIST controller design, the transition coverage 
metric and sequences coverage metric are considered. The 
transitions among the states of FSM depend on the 
functionality of MBIST and same with the possible 
sequences in the MBIST controller HDL code. There are 24 
possible transitions in FSM of controller which are covered 
by transition coverage metric shown in Fig. 13 with also 
100% state transition coverage.     In the Fig. 13, it is shown 
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that total sequence coverage score is 99.88% and all 
sequences presented in HDL code of controller are covered 
except one. 

 

Fig. 17.  No. of sequences with sequence coverage for controller’ HDL 
code. 

 
The first column and first row in the Fig. 17 shows the 
states present in MBIST controller. The Fig. 17 shows the 
total number of sequences with starting states of sequences 
while including how many times a particular state became 
part of sequences. For example, there are 14 sequences 
started with pause state in which these sequences include 
the s_idle state and these all sequences have been covered. 
The dark shaded cell in Fig. 17 shows the untested or 
uncovered sequence which start from s_done state and 
again include itself in the sequence. 
 
3) Assertion Coverage: Assertions are embedded 
within the HDL code of MBIST controller annotate the 
functionality of design and their main purpose was to 
generate the assertion coverage metric. This assertion 
coverage metric covered the successful execution of 
assertions written for functionality of MBIST controller in 
system Verilog HVL [11].    As shown in Fig. 18, the 
successful execution of assertions is shown by shaded 
portion. And total coverage score for the assertion coverage 
is 100% shown in Fig. 19 with the total functional coverage 
report of MBIST controller.   
 

 

Fig. 18.  Covered assertions. 
 
     It is a very tedious task to write the test cases for every 
functional specification of design to cover or verify it and it 
becomes impractical for large and complex designs. 
Assertions are included to validate the MBIST controller 
design by increasing the functional coverage.  
 
5. RESULTS 
According to verification plan for MBIST controller design  
all required internal and interfacial functional features are 
exercised using SVAs which helped to apply the efficient or 
directed test cases to the controller. Table 4 shows the 
directed test cases towards the desired functionality check 
with total functional coverage of MBIST controller. 37 out of 
53 assertion got success with only 6 directed test ceses. 
Based on the failed assertions, the design bugs are removed 
and  the test cases are improved to get the 100 percent 
success of the assertions. After applying 25 directed test 
cases 100 percent assertion coverage is obtained, as shown 
in Fig.19 and 96.50 percent functional coverage as shown in 
Table 4. 
The simulation output with SVAs for the MBIST controller 
design is shown in figure 19 and the 96.50 percent 
functional coverage score is shown in Fig.20. All the results 
for implementation and verification of MBIST controller are 
generated using Synopsys-VCS®. 
 

Table 4. Shows the improvements in functional coverage by using 
assertions with test cases. 

Directed 
test cases 

 SVAs in 
verification plan 

Successful 
assertions 

Total functional 
coverage score 

6 53 37 77.86 % 
25 53 53 96.50 % 

 

 
 
Fig 19. Simulation output during dynamic verification with assertions. 
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Fig 20. Total Functional coverage 

6.  CONCLUSION 
In this paper,  Imprementation and Verfication of MBIST 
controller using System Verilog is presented. The use of 
system verilog also increased the observability of the 
design. March C algorithm based MBIST controller is 
designed with an improvement in the algorithm by adding 
a pause element to test memory retention faults. To verify 
the designed MBIST controller against intended features, 
assertion based verification and coverage analysis approach 
is used. ABV and coverage analysis approach helped to 
make the verification and design process efficient and less 
time consuming by finding the bugs, exercising the corner 
cases in the design and by finding the directed test cases 
with less efforts. ABV helped to write directed and efficient 
or approx 32 % less test cases with 100% assertion coverage 
and approx equal total functional coverage i.e. 97 % 
approx., than the use of posssible random test cases for 
implemented MBIST controller design. In this way ABV 
using coverage analysis helped to fasten the design and 
verification process with better quality of the design. 
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