
Assertion Based Functional Verification of
MBIST Controller Using Coverage Analysis

Ashwini Kumar, Akshay Mann
Abstract— For the functional validation of hardware designs, simulation with coverage analysis is still the primary means at RTL description
of design. Here coverage analysis shows the way towards the optimal use of resource, validation or verification completeness and untested
areas of HDL design. The complete coverage analysis of Memory Built in Self-Test (MBIST) controller using several code and functional
coverage metrics is presented. Coverage metrics are used to keep the focus at assertions written to verify the functionality of MBIST
controller. Use of assertions and coverage metrics gets rid-off massive test patterns to validate the MBIST controller design more strongly.
This paper also presents the implementation of March algorithm based MBIST controller using System Verilog. With the help of assertions
written in System Verilog and their coverage analysis, the test cases are reduced from 88 test cases to 25 test cases to achieve the
approximately same functional coverage i.e. 97 % is also discussed in the paper.

Index Terms— MBIST Controller, System Verilog Assertions (SVA), FSM, Coverage Analysis, Code Coverage, Functional Coverage.

—————————— ——————————

1. INTRODUCTION

 A complex System on Chip (SoC) design comprises

several embedded memories to increase the processing
speed. The testing of memories is very crucial because of
very low yield of memories during fabrication. They are
very much affected by several memory faults. But in case
of embedded memories it becomes a tedious task because
of no primary inputs and outputs to external of SoC. For
this purpose a MBIST circuitry is added with memory
which make this testing job very comfortable while adding
some area over head.
 The main and important part of MBIST circuitry is
MBIST controller which controls the sequence of all
operations during testing [1]. The fault detection in the
memory depends on the read and write operations
sequence controlled by the MBIST controller. It is good to
know that the design of MBIST controller does not depend
on size of memory under test. For the reliability purpose of
MBIST, the functional verification of the MBIST controller
design is utmost necessary.
 Functional verification of MBIST controller is the key to
guarantee the quality of design and reliability for required
functionality. Verification efforts has been put on verifying
the correct functionality at initial register-transfer level
(RTL) descriptions of MBIST controller written in hardware
description language (HDL). Traditionally, the functional
verification is done by simulation with large number of test
patterns but at the same time formal verification techniques
claim to verify the design at different design levels. The
simulation based methods will continue to be an important

part of verification process until the computing complexity
of the formal verification methods reduces [2].

 But during simulation, an important question always
bothers to the designers and the verification engineers: Are
we done yet? Or is the verification completed? In the
typical design environments the verification is assumed to
be completed if design engineer thinks that he has done
complete and thorough simulation. But here, the quality of
the test cases depends on the designer’s understanding of
the design and that is not measurable.
 A verification engineer can determines the level or depth
of verification by coverage analysis of the design under
verification (DUV). It can be analyzed that which part of
HDL code of design is tested or not during simulation by
monitoring the execution of code. The coverage analysis
highlights the uncovered code portion[3] thus It provides
the clear understanding where to put the effort to test
untested the design functionality to achieve 100% coverage
which is desirable for any design. Achieving 100% coverage
cannot give 100% surety that design is error free. It
provides the systematic approach to attain completeness of
verification.
 For this purpose, code coverage and functional coverage
metrics are used to verify the design in HDL. The code
coverage comprises the several coverage metrics and can
vary based on used tool for coverage analysis [3]. The basic
idea behind these coverage metrics is to cover up the design
structure completely written in HDL. While the functional
coverage focuses on the functionality of the design. Till now

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

65

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

there is not such a metric which is accepted for complete
and reliable verification coverage.

Fig. 1. Effect of applying coverage analysis.[3]

The improvement in the verification in less time is possible
by using coverage analysis is shown in Fig. 1. Nevertheless
the simulation based validation of design is partial
complete.
 This paper includes the FSM design of MBIST controller
based on March algorithm with pause logic using system
Verilog to detect different memory faults such as address
faults (AFs), stuck at faults (SAFs), transition faults (TFs),
and coupling faults (CFs) and retention faults in SRAM
memory. For the complete validation of MBIST controller,
simulation based and formal verification technique are
combined for coverage validation of MBIST controller.

The rest of paper is organized as follows: section II
shows the implementation of MBIST controller which is
taken as DUV. Section III comprises assertion based
functional verification of MBIST controller. Section IV
comprises the different coverage metrics, coverage analysis
and coverage results. Section V includes final results and
test case analysis. In section VI paper is concluded.

2. FSM IMPLEMENTATION OF MBIST
CONTROLLER
 The controller generates the control signals for other
components of MBIST circuitry such as patt_g for
data/pattern generator, en to start the address counter
inside the address generator, rw for Read/ writes generator
and en for signature analyzer and other components too.
The top level block diagram of MBIST controller is shown
in Fig. 2. Mainly the controller handles the test sequence
and its result corresponding to memory output. After
assertion of T_mode signal from higher level processor or
controller, MBIST controller generates the control signals
corresponding to the pattern generator, address generator,
read/write and signature analyzer. Controller and pattern
generator control the up or down address sequence by
generating the control signals for address generator. The
generation of March pattern is based on the ‘0’ or ‘1’ value

of control signal patt_g whether it is marching 0 or 1.
Controller generates the control signal rw to the read/write
controller for the reading or writing operations from and
into the memory.

Fig. 2. Top level block diagram of MBIST controller

 Match signal is the output of signature analyzer and
input to the controller. Based on the value of match,
controller asserts the pass or fails if match is ‘1’ or ‘0’
correspondingly. Only after completion of March test
sequence, controller asserts the done signal.
 Pause element is added just after the write element to
check which memory cell is not capable to retain the same
written data after a particular time. During pause the
controller does not allows the execution of the original
march test sequence of read/write operations on memory
under test.

Fig. 3. March C algorithm with pause element.

 The controller’s implementation is based on March C
algorithm [4] which is capable to detect SAFs, AFs, TFs, CFs
(except linked CFs). The March C algorithm includes 6
march elements say M1, M2, M3, M4, M5 and M6 [5]. But
here in Fig. 3, the implemented algorithm comprises an
additional element pause say M7 to check the memory data
retention time which generates memory retention faults.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

66

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 4. Finite State Machine Diagram of MBIST Controller

 The Fig. 4 shows the implemented FSM structure of
MBIST controller which is easy to implement as a FSM and
very feasible if no further improvement is required in
MBIST controller design. The above FSM state diagram
consists several states and every state represents a
particular march element except state idle.
 Initially controller rests at Idle state and keeps other the
MBIST circuitry in idle until t_mode signals is asserted. But
after getting value ‘1’ at t_mode signal, controller starts
traversing the next states to generate required pattern for
read or write operations from and into the memory cells.
Now in offline testing MBIST controller takes the controls
of memory from higher level processor. At every state a
read/write signal ‘rw’ gets a value ‘1’ or ‘0’. State Wdn0
comes when t_mode signal is asserted high and at every
maximum and minimum count value the present state
changes to the next state as shown in Fig. 4. The maximum
value of count depends on the address width of SRAM
memory. In normal condition if a state transition happens,
it means a March element gets complete. At first March
state Wdn0, ‘rw’ signal is kept at ‘0’ and read/write
generator write data in memory until count value gets
minimum. Here ‘W’ represents the write operation, ‘dn’

shows the down marching and ‘0’ shows that marching
pattern is 0. During up marching (), count starts from
minimum address value to the maximum address value
and state changes only when count gets its maximum value
unless t_mode and reset signal change. In case of down
marching, state transition occurs only when count gets its
minimum value. Pause state is inserted between a write
state (Wdn0) and a read state (Rdn0). During pause,
controller just holds the marching operation on memory for
the specified time. The March testing follows the read-test-
write sequence that’s why every read state in FSM design
comprises the test result as a signal pass /fail. After
completion of test controller enters into the Done state and
controller asserts the done signal to show that the test is
completed. The FSM shown in Fig. 4 is implemented using
System Verilog in Synopsys VCS tool.

. Fig. 5. Simulation output

 In the simulation output waveform only input and
output of MBIST controller are shown in Fig. 5 except count
and signature. The ‘1’ value of pass or fail signal indicates
the success and failure of corresponding applied data
pattern on the memory. When the match signal gets ‘0’
value in the next clock cycle, MBIST controller assert the fail
high and low to the pass signal. Again when match goes
high the controller assert pass signal high and low to fail.
Whenever rst (reset) signal goes high, the state immediately
switches to the idle state. After attaining idle state, there is
no transition in the state of controller and state gets stable
until rst gets low value again. Controller starts transitions
state to next state only when rst is low and t_mode signal
gets high value.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

67

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

 Simulation output shown in Fig. 5 is only based on some
test cases and provides the functionality check but not
completely. With such functional checking, there is a
possibility to leave some corner cases untested. And there is
possibility of bugs in such untested corner cases. These
corner cases are tested by using system Verilog assertion for
design’s functional properties and by adding different test
cases after analyzing the coverage metrics for the MBIST
controller.

3. Functional Verification of MBIST
controller

 Assertion Based Verification of MBIST Controller

Assertion Based Verification addresses all the challenges
faced during only simulation based validation of design
without the use of assertions. Here, assertions are defined
for MBIST controller with complete assertion’s ontology
which includes the information about assertion under
construction such as class, type, name, expression, message,
severity level, condition and snippet. The SVAs are written
for MBIST controller to check the required specifications
and functional properties according to verification plan.
Based on the verification requirements, assertions for
MBIST controller design are categorized only on the basis
of class and other ontological information would be
covered with this.

Class: Two main types of classes to define assertions for
MBIST controller are interface boundary and internal
functional spots.

At Interface Boundary of MBIST Controller:

 It is a block level based approach to write the assertions for
MBIST controller. It is mentioned in section 2 that MBIST
controller interacts with several blocks in MBIST
architecture and other than MBIST too. SVAs are written
here to check whether the controller interface/boundary
signals are according to the required controller’s
specification or not. Here, assertions mainly check the
timing requirements among the interface signals.
Table 1. Verification requirements for the interface signals.

Interface
Features

 Interface signals and their features
Signals Expected features

1. Reset,
T_mode

T_mode=1 and reset=0 and
its opposite must be
synchronous

2. T_mode, en en=1 with in 1clock cycle

after t_mode is asserted
3. Match, Pass, Pass=1 with in 1clock cycle

after match is asserted
4. Match, Fail, Fail=0 with in 1clock cycle

after match=0

Internal Functional Spots of MBIST Controller: MBIST
controller is the control block of MBIST which is
implemented as a FSM. The main verification requiremnets
of FSM are defined as the transitions among the states,
sequencing and timing requirements. For the every march
operation shown in figure 2, there is a different state in
controller’s FSM design.
 Now here, assertions are written according to verification
plan and classified to verify the llegal state transitions,
correct sequencing, timing requirements and functionality
in each state.

4. COVERAGE ANALYSIS FOR MBIST
CONTROLLER

 Coverage analysis makes functional verification easy
and less time consuming and it also helps to know whether
functional verification is done enough or not. Thats why
coverage analysis plays important role to check the
verification completeness of MBIST controller.
 The controller’s coverage analysis depends on two main
coverage, one is code coverage and another is functional
coverage. Code coverage is independent of functional
coverage but it helps to obtain verification completeness of
MBIST controller.

A. Code Coverage Analysis of MBIST Controller
 Here eight different very useful coverage metrics are
introduced that can be classified as code coverage metrics
for MBIST controller. Sometime different names are used
for similar types of coverage metrics [2] depending upon
the understanding and used coverage tool. Code coverage
metrics helped to identify which structure in HDL code of
controller is exercised during simulation.

1) Line Coverage: Line is one of the simplest
structures of HDL code. Line coverage metric as Fig. 6
shows the result of exercised lines with respect to the total
number of lines present in HDL code of MBIST controller.
A line of system Verilog code is said to be covered if it has
had transaction on it. An event may or may not occur
during transaction at that line but line count as covered. [6]

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

68

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 6. Line coverage score for MBIST controller.

 In Fig. 6, the total line coverage score is around 98.5% for
system verilog HDL code of MBIST controller . At the same
time the Fig. 7 shows the covered lines and uncovered line
in HDL of controller. It helped to identify the cause of not
covering the particular lines and shows the effectiveness of
test suits.
2) Statement Coverage: In this coverage analysis of
MBIST controller, it only counts the executable statements.
A line may contains more than one statements .For a
conditional statement at line 36 in Fig. 7, there one
countable statement state<= s_idle considered for if
statement and multiple countable statements are
considered for else statement [2]. Fig. 6 shows the total
statement coverage score is around 99%. In Fig. 8 at line 68,
the red shaded portion shows the uncovered countable
statements for else statement.

Fig. 7. Covered lines in the HDL code of MBIST controller.

2) Block Coverage: Block coverage is also called
segment coverage of HDL code. Its measuring unit of code
is a sequence of non-branching codes which is executed at
the same simulation time [2]. Block coverage reduces the
recording units for coverage analysis. Mostly system tool
records as block coverage and display results in term of
statement coverage but there is a slightly difference
between them. In Fig. 6, the block coverage score is shown
as around 99% with total number of blocks extracted from
the MBIST controller HDL code by Synopsys-VCS tool.

3) Branch Coverage: Branch coverage metric is also
called decision coverage matric. This metric involved the
control flow through the MBIST controller HDL code
during simulation and can be represented as control flow
graph (CFG) to code [7]. As it measures the coverage of

each branch present in if and case statements. It focused on
the decision points or control statements that affect the
control flow of the controller’s HDL code execution. From a
decision point, different branches originates in HDL such as
form an if statement, there are two branches one is for true
and another is for false case. Decision coverage will report
the evaluation in both true and false cases during
simulation. For the case statement present in FSM HDL code
of MBIST controller, decision coverage verified that each
branch of the case statement, including the default. But the
default state in the designed MBIST controller is idle state
which is controlled by reset signal which is at high value by
default. It showed uncovered default branch and one other
at line 68 shown in Fig. 8. The total branch coverage score
for designed controller is 94.74 shown in Fig. 9. It is very
much possible that at initial attempts line coverage is
around 100% and branch coverage is much less than of it. It
shows that there are still untested cases.

Fig. 8. Covered branches in HDL code of MBIST controller.

The difference between line coverage and branch coverage
of MBIST controller is due to untested default branch which
is due to implied design of case statement in controller’s
HDL
Therefore, Branch coverage Metric is considered to be more
complete than line coverage matric.

Fig. 9. Branch coverage score for MBIST controller

4) Path Coverage: Path coverage measures the
coverage of all paths present in the HDL code. A path is
defined as a unique sequence of branches or decisions from
the starting of a code section defined in HDL to the end of
it. This sequence must be corresponding to a path in the
control flow of the HDL code. A path in HDL code must
contain an edge which is not included in other paths [7]. In
HDL code of controller, there are many if statements which
generates the different branches and sequences. In other

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

69

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

words, a control statement generates a different path in the
HDL code. Path coverage is similar to decision coverage but
it covers multiple sequential decisions.

Fig. 10. Path coverage score for MBIST controller

The branch of case statement (In the HDL code of MBIST
controller) on line 67 followed by the else branch of if in Fig.
8 defines one path. The total path coverage score of MBIST
controller is 81.58% as shown in Fig. 10. If a branch is not
covered in HDL code then it may stop the coverage of
several paths through this branch and generates the
sequencing error in the design that’s why path coverage
metric is more complete than the branch or decision
coverage metrics. It is a very cumbersome because of very
large number of paths in a design which makes 100 % score
impractical for path coverage [2].

5) Conditional coverage: Conditional coverage or
multiple condition coverage [8] is sometimes called
expression coverage because the conditions are evaluating
based on variable or expression in the conditional
statements. It provides the coverage statistic for variables
and expressions. It is shown in Fig. 11 as shaded portions
(as evaluated expressions) how a conditional coverage
metrics records the coverage by evaluating the variables or
expressions. The total conditional coverage score is 100%
shown in Fig. 12, it means every possible case of conditions
has been evaluated during simulation of HDL code of
MBIST controller. It is a very important and critical
coverage metrics because it can find the errors in the
conditional statements that cannot be easily found by any
other coverage analysis [2].

Fig. 11. Covered conditions in the HDL code of MBIST controller.

Fig. 12. Conditional coverage scores for MBIST controller.

6) Event Coverage: Most HDL simulators are event-
driven. Therefore, it is necessary to care about the possible
events in a design. Events are associated with the change of
a signal. For example, as shown in the line 29 of Fig. 7, there
are two event always @ (posedge clk or posedge rst) which
wait for the clk or rst signal changing from low to high.
These two are the control events [9] of complete FSM
design of MBIST controller. It is shown in Fig. 12 that both
events have been covered completely and event coverage
score for the controller’s HDL code is 100%. This coverage
metrics is very useful when there are too much control
events in the design.

7) FSM Coverage: In code coverage point of view, the
FSM coverage metric cover number of traversed states in
FSM design during the simulation. Here FSM coverage is
defined as language-based code coverage for the MBIST
controller HDL code just to show whether the all design
states are traversed or not. It is most important coverage
metric for presented MBIST controller design because it
found out most of the design bug due to its closeness to the
behavior of design space. The transitions and sequencing
coverage of MBSIST controller’s FSM is defined in the
functional coverage analysis in next subsection of paper.

Fig. 13. FSM coverage score for MBIST controller.

 The FSM state traversed coverage score is 100% as
shown in Fig. 13. The all 13 states have been traversed in
HDL of MBIST controller written in system Verilog during
simulation shown as shaded portion in Fig. 14.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

70

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig. 14. Covered states and transitions of MBIST controller FSM.

The defining of FSM coverage metric was relatively more
beneficial than other metric because it is MBIST controller
design dependent. The main problem was to write the
coverage directed tests so that all states, transition and
sequences gets covered.

B. Functional coverage Analysis of MBIST
Controller
 Here defined functional coverage metrics are
corresponding to the designed FSM controller. Metrics
defined in this category such as toggle coverage, Sequence
and transition coverage of FSM and assertion coverage are
related to computation performance of HDL code rather
than its structure [7]. The main motive to define such
metrics was to exercise each functional scenario of MBIST
controller. During functional coverage, the coverage
monitor looks for error in state transitions and event
sequencing mainly in FSM designs. Assertions which
interpret the MBIST controller hardware functionality in
system Verilog language are considered the special case to
monitor.

1) Toggle Coverage: Sometime toggle coverage is also
called as variable coverage [2]. It measures that each bit in
the nets and registers or bits of logic change their polarity
during simulation and not stuck at one level [10]. Toggle
coverage metrics is considered as first functional coverage
metric because without tested a bit properly function
coverage target cannot be complete. The functional
behavior of MBIST controlled is different for the toggling
from 0 to 1 and from 1 to 0 of some logic bits.

Fig. 15. Toggle coverage score for MBIST controller in detail.

 In Fig. 15, detail toggle coverage report is shown with
toggle score of net, register and logic bits. At same time the
Fig. 16 shows that which logic signal bits did not toggled
completely. In Fig. 16 the red shaded signals shows that
their bits are not changing polarity that’s why not covered
by coverage metric during simulation. But it is understood
here that signal c_max and c_min in MBIST controller
design are the minimum and maximum value of address
counter which are constants values.
 Toggle coverage analysis is proved very useful for
MBIST controller functional verification because
involvement of 32 bit read and write for the 32 bit wide
SRAM. It is applied for structural [10] and white box
verification of controller to show that the control logic is
working as intended.

 Fig. 16. Toggle coverage details of logic bits in HDL code of MBIST
controller.

2) Transition and Sequence Coverage as parts of
FSM coverage: As functional coverage point of view
of FSM MBIST controller design, the transition coverage
metric and sequences coverage metric are considered. The
transitions among the states of FSM depend on the
functionality of MBIST and same with the possible
sequences in the MBIST controller HDL code. There are 24
possible transitions in FSM of controller which are covered
by transition coverage metric shown in Fig. 13 with also
100% state transition coverage. In the Fig. 13, it is shown

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

71

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

that total sequence coverage score is 99.88% and all
sequences presented in HDL code of controller are covered
except one.

Fig. 17. No. of sequences with sequence coverage for controller’ HDL
code.

The first column and first row in the Fig. 17 shows the
states present in MBIST controller. The Fig. 17 shows the
total number of sequences with starting states of sequences
while including how many times a particular state became
part of sequences. For example, there are 14 sequences
started with pause state in which these sequences include
the s_idle state and these all sequences have been covered.
The dark shaded cell in Fig. 17 shows the untested or
uncovered sequence which start from s_done state and
again include itself in the sequence.

3) Assertion Coverage: Assertions are embedded
within the HDL code of MBIST controller annotate the
functionality of design and their main purpose was to
generate the assertion coverage metric. This assertion
coverage metric covered the successful execution of
assertions written for functionality of MBIST controller in
system Verilog HVL [11]. As shown in Fig. 18, the
successful execution of assertions is shown by shaded
portion. And total coverage score for the assertion coverage
is 100% shown in Fig. 19 with the total functional coverage
report of MBIST controller.

Fig. 18. Covered assertions.

 It is a very tedious task to write the test cases for every
functional specification of design to cover or verify it and it
becomes impractical for large and complex designs.
Assertions are included to validate the MBIST controller
design by increasing the functional coverage.

5. RESULTS
According to verification plan for MBIST controller design
all required internal and interfacial functional features are
exercised using SVAs which helped to apply the efficient or
directed test cases to the controller. Table 4 shows the
directed test cases towards the desired functionality check
with total functional coverage of MBIST controller. 37 out of
53 assertion got success with only 6 directed test ceses.
Based on the failed assertions, the design bugs are removed
and the test cases are improved to get the 100 percent
success of the assertions. After applying 25 directed test
cases 100 percent assertion coverage is obtained, as shown
in Fig.19 and 96.50 percent functional coverage as shown in
Table 4.
The simulation output with SVAs for the MBIST controller
design is shown in figure 19 and the 96.50 percent
functional coverage score is shown in Fig.20. All the results
for implementation and verification of MBIST controller are
generated using Synopsys-VCS®.

Table 4. Shows the improvements in functional coverage by using
assertions with test cases.

Directed
test cases

 SVAs in
verification plan

Successful
assertions

Total functional
coverage score

6 53 37 77.86 %
25 53 53 96.50 %

Fig 19. Simulation output during dynamic verification with assertions.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

72

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

Fig 20. Total Functional coverage

6. CONCLUSION
In this paper, Imprementation and Verfication of MBIST
controller using System Verilog is presented. The use of
system verilog also increased the observability of the
design. March C algorithm based MBIST controller is
designed with an improvement in the algorithm by adding
a pause element to test memory retention faults. To verify
the designed MBIST controller against intended features,
assertion based verification and coverage analysis approach
is used. ABV and coverage analysis approach helped to
make the verification and design process efficient and less
time consuming by finding the bugs, exercising the corner
cases in the design and by finding the directed test cases
with less efforts. ABV helped to write directed and efficient
or approx 32 % less test cases with 100% assertion coverage
and approx equal total functional coverage i.e. 97 %
approx., than the use of posssible random test cases for
implemented MBIST controller design. In this way ABV
using coverage analysis helped to fasten the design and
verification process with better quality of the design.

ACKNOWLEDGEMENT

 I would like to take this opportunity to express my
gratitude to the people whose assistance has been invaluable in
this paper. I would like to thank the Director of Indian Institute
of Information Technology, Allahabad for providing financial
and infrastructure support for making this work possible.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Nor Zaidi Haron1, Siti Aisah Mat Junos, Abdul Hadi Abdul
Razak Mohd. Yamani Idna Idris4 “Modeling and Simulation of
Finite State Machine Memory Built-in Self- Test Architecture for
Embedded Memories” in proc. of IEEE, APC on applied
electromagnetic, 2007,pp.1-4244-1435.
Jing-Yang Jou and Chien-Nan Jimmy Liu “Coverage Analysis
Techniques for HDL Design Validation” NOVAS Software Inc.
under grant NSC89-2215-E-009-009.
David Dempster and Micheal Stuart “Techniques for Verifying
HDL Designs” Teamwork International and TransEDA Limited,
june 2002.
A.J. van de Goor and Yervant Zoriaii “Effective March
Algorithms for Testing Single-Order Addressed Memories”
IEEE,1993 1066-1409.
Masnita M.I, Wan Zuha W.H., R.M. sidek and I.A Halin, “The
Data and Read/Write Controller for March Based SRAM Diagnostic
Algorithm for MBIST” in proc. of IEEE, SCROeD 2009, pp. 978-
1-4244-5187-6.
M. Zia Ullah Khan, and Sandra R. Clark “Using Code coverage to
Enhance Design Validation”, Intel Corporation.
Serdar Tasiran and Kurt Keutzer, “Coverage Metrics for
Functional Validation of Hardware Designs”, in proc. of IEEE,
Designs & Test of Computers’2001 , pp- 0740-7475.
Graeme Cunningham, Paul B. Jackson and Julian A. B. Dines,
“Expression Coverability Analysis: Improving Code Coverage
Analysis with Model Checking”, Design and Verification
Conference (DVCon), San Jose, March 2004.
Richard C. Ho and Mark A. Horowitz, “Validation Coverage
Analysis of Complex Digital Design”, in proc. of IEEE,
ICCAD’1996, pp-1063-6757.
System Verilog, IEEE Standard for System Verilog, IEEE Std.
1800-2012.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

73

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

	1. INTRODUCTION
	2. FSM IMPLEMENTATION OF MBIST CONTROLLER
	3. Functional Verification of MBIST controller
	4. COVERAGE ANALYSIS FOR MBIST CONTROLLER
	A. Code Coverage Analysis of MBIST Controller
	1) Line Coverage: Line is one of the simplest structures of HDL code. Line coverage metric as Fig. 6 shows the result of exercised lines with respect to the total number of lines present in HDL code of MBIST controller. A line of system Verilog code is said to be covered if it has had transaction on it. An event may or may not occur during transaction at that line but line count as covered. [6]
	2) Statement Coverage: In this coverage analysis of MBIST controller, it only counts the executable statements. A line may contains more than one statements .For a conditional statement at line 36 in Fig. 7, there one countable statement state<= s_idle considered for if statement and multiple countable statements are considered for else statement [2]. Fig. 6 shows the total statement coverage score is around 99%. In Fig. 8 at line 68, the red shaded portion shows the uncovered countable statements for else statement.
	2) Block Coverage: Block coverage is also called segment coverage of HDL code. Its measuring unit of code is a sequence of non-branching codes which is executed at the same simulation time [2]. Block coverage reduces the recording units for coverage analysis. Mostly system tool records as block coverage and display results in term of statement coverage but there is a slightly difference between them. In Fig. 6, the block coverage score is shown as around 99% with total number of blocks extracted from the MBIST controller HDL code by Synopsys-VCS tool.
	3) Branch Coverage: Branch coverage metric is also called decision coverage matric. This metric involved the control flow through the MBIST controller HDL code during simulation and can be represented as control flow graph (CFG) to code [7]. As it measures the coverage of each branch present in if and case statements. It focused on the decision points or control statements that affect the control flow of the controller’s HDL code execution. From a decision point, different branches originates in HDL such as form an if statement, there are two branches one is for true and another is for false case. Decision coverage will report the evaluation in both true and false cases during simulation. For the case statement present in FSM HDL code of MBIST controller, decision coverage verified that each branch of the case statement, including the default. But the default state in the designed MBIST controller is idle state which is controlled by reset signal which is at high value by default. It showed uncovered default branch and one other at line 68 shown in Fig. 8. The total branch coverage score for designed controller is 94.74 shown in Fig. 9. It is very much possible that at initial attempts line coverage is around 100% and branch coverage is much less than of it. It shows that there are still untested cases.
	4) Path Coverage: Path coverage measures the coverage of all paths present in the HDL code. A path is defined as a unique sequence of branches or decisions from the starting of a code section defined in HDL to the end of it. This sequence must be corresponding to a path in the control flow of the HDL code. A path in HDL code must contain an edge which is not included in other paths [7]. In HDL code of controller, there are many if statements which generates the different branches and sequences. In other words, a control statement generates a different path in the HDL code. Path coverage is similar to decision coverage but it covers multiple sequential decisions.
	5) Conditional coverage: Conditional coverage or multiple condition coverage [8] is sometimes called expression coverage because the conditions are evaluating based on variable or expression in the conditional statements. It provides the coverage statistic for variables and expressions. It is shown in Fig. 11 as shaded portions (as evaluated expressions) how a conditional coverage metrics records the coverage by evaluating the variables or expressions. The total conditional coverage score is 100% shown in Fig. 12, it means every possible case of conditions has been evaluated during simulation of HDL code of MBIST controller. It is a very important and critical coverage metrics because it can find the errors in the conditional statements that cannot be easily found by any other coverage analysis [2].
	6) Event Coverage: Most HDL simulators are event-driven. Therefore, it is necessary to care about the possible events in a design. Events are associated with the change of a signal. For example, as shown in the line 29 of Fig. 7, there are two event always @ (posedge clk or posedge rst) which wait for the clk or rst signal changing from low to high. These two are the control events [9] of complete FSM design of MBIST controller. It is shown in Fig. 12 that both events have been covered completely and event coverage score for the controller’s HDL code is 100%. This coverage metrics is very useful when there are too much control events in the design.
	7) FSM Coverage: In code coverage point of view, the FSM coverage metric cover number of traversed states in FSM design during the simulation. Here FSM coverage is defined as language-based code coverage for the MBIST controller HDL code just to show whether the all design states are traversed or not. It is most important coverage metric for presented MBIST controller design because it found out most of the design bug due to its closeness to the behavior of design space. The transitions and sequencing coverage of MBSIST controller’s FSM is defined in the functional coverage analysis in next subsection of paper.

	B. Functional coverage Analysis of MBIST Controller
	1) Toggle Coverage: Sometime toggle coverage is also called as variable coverage [2]. It measures that each bit in the nets and registers or bits of logic change their polarity during simulation and not stuck at one level [10]. Toggle coverage metrics is considered as first functional coverage metric because without tested a bit properly function coverage target cannot be complete. The functional behavior of MBIST controlled is different for the toggling from 0 to 1 and from 1 to 0 of some logic bits.
	2) Transition and Sequence Coverage as parts of FSM coverage: As functional coverage point of view of FSM MBIST controller design, the transition coverage metric and sequences coverage metric are considered. The transitions among the states of FSM depend on the functionality of MBIST and same with the possible sequences in the MBIST controller HDL code. There are 24 possible transitions in FSM of controller which are covered by transition coverage metric shown in Fig. 13 with also 100% state transition coverage. In the Fig. 13, it is shown that total sequence coverage score is 99.88% and all sequences presented in HDL code of controller are covered except one.
	3) Assertion Coverage: Assertions are embedded within the HDL code of MBIST controller annotate the functionality of design and their main purpose was to generate the assertion coverage metric. This assertion coverage metric covered the successful execution of assertions written for functionality of MBIST controller in system Verilog HVL [11]. As shown in Fig. 18, the successful execution of assertions is shown by shaded portion. And total coverage score for the assertion coverage is 100% shown in Fig. 19 with the total functional coverage report of MBIST controller.

	6. CONCLUSION
	ACKNOWLEDGEMENT
	 I would like to take this opportunity to express my gratitude to the people whose assistance has been invaluable in this paper. I would like to thank the Director of Indian Institute of Information Technology, Allahabad for providing financial and infrastructure support for making this work possible.
	REFERENCES

